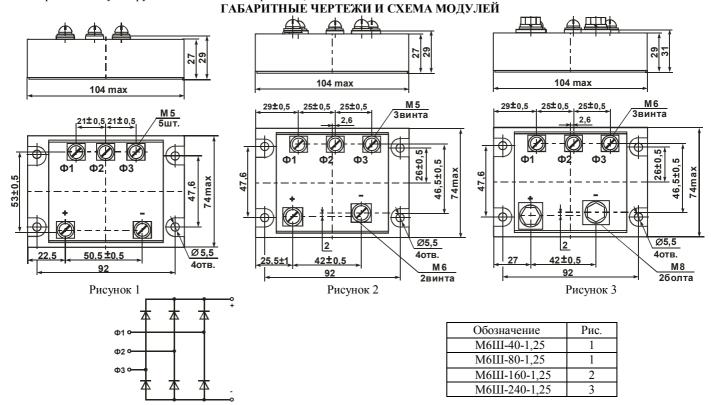
ЭЛЕКТРУМ АВ

Паспорт


Модули на основе диодов Шоттки

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

МОДУЛЬ ТРЕХФАЗНОГО ДИОДНОГО МОСТА М6Ш-40-1,25; М6Ш-80-1,25; М6Ш-160-1,25; М6Ш-240-1,25

Модуль трехфазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ОСНОВНЫЕ ПАРАМЕТРЫ

T окр = 25 °C

			0 011 01	JIIDIE IIII	711111111111111111111111111111111111111				1 orp 23 C
Наименование	Имп	ульсное	Обратный то	ок вентиля,	Электрическая пр	очность	Время обр	оатного	Тепловое сопро-
изделия	П	оямое	I_R	I_R ,		изоляции по постоянному		вления	тивление пере-
	напряж	ение диода,	m.A	·		току между радиатором и		trr,	ход-радиатор
	1	$U_{FM,}$			силовыми выводами,		нс		Rth(j-c),
		В				U_{ISOL} ,			°C/B _T
		I _{OUT} ,		U_{RM} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М6Ш-40-1,25		126						40	0,80
М6Ш-80-1,25	0,85	251	3,0	125	4000	1	100	80	0,50
М6Ш-160-1,25	0,83	503	3,0	123	4000	1	100	160	0,25
М6Ш-240-1,25		754						240	0,16

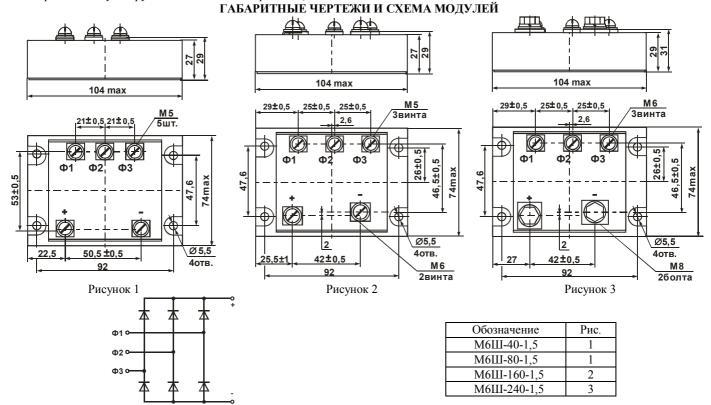
ПРЕДЕЛЬНО - ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

	111 114	<u>teabito - goria e i</u>	THE TEMES	ORCHUIU II	171141111		
Наименование изделия	-	е обратное ние диода	Средний выпрям- ленный ток модуля	ударный	щийся прямой ток модуля _{M)} , А	Температура перехода $T_{ m VI}^*,$	
	неповторяющееся U_{RSM} , B	повторяющееся U_{RRM} , B	Io, A		Tc, °C	1 V 0	C C
	не менее	не менее	не более	не более	C	не менее	не более
М6Ш-40-1,25			40	300			
М6Ш-80-1,25	125	125	80	600	125	- 40	+125
М6Ш-160-1,25	123	123	160	1200	123	- 40	+123
М6Ш-240-1,25			240	1800			

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль соответствует АЛЕИ.431424.000 ТУ.


Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

Драгоценных металлов не содержится

МОДУЛЬ ТРЕХФАЗНОГО ДИОДНОГО МОСТА М6Ш-40-1,5; М6Ш-80-1,5; М6Ш-160-1,5; М6Ш-240-1,5

Модуль трехфазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ОСНОВНЫЕ ПАРАМЕТРЫ

T окр = 25 °C

				OCHO	DIIDIE HAF	ANIETEDI				1 0kp - 25 C
ĺ	Наименование	Имп	ульсное	Обратный то	ок вентиля,	Электрическая пр	очность	Время обр	атного	Тепловое сопро-
	изделия	пр	ямое	I_R	-		изоляции по постоянному		вления	тивление пере-
		напряже	ение диода,	M.A			току между радиатором и		trr,	ход-радиатор
		Ţ	J_{FM}			силовыми выво	одами,	нс		Rth(j-c),
			В			U_{ISOL} ,				°C/BT
			I _{OUT} ,		U _{RM} ,	В	t,		$I_{F(AV)}$	
		не более	A	не более	В	не менее	МИН	не более	A	не более
	М6Ш-40-1,5		126						40	0,80
	М6Ш-80-1,5	0,85	251	3,0	150	4000	1	100	80	0,50
	М6Ш-160-1,5	0,83	503	3,0	130	4000	1	100	160	0,25
	M6III-240-1.5		754						240	0.16

ПРЕДЕЛЬНО - ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

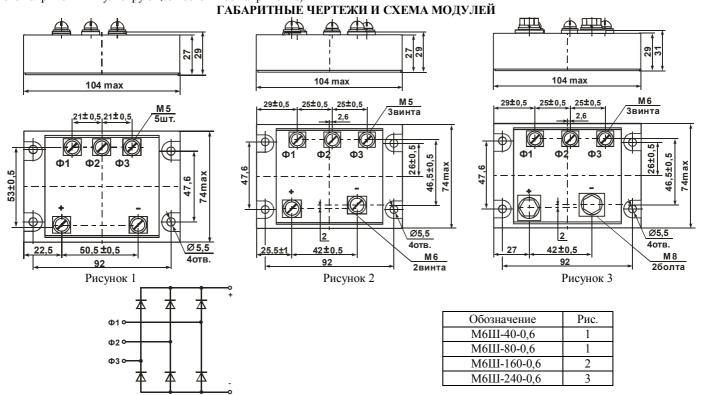
Наименование изделия	· ·	е обратное ние диода	Средний выпрям- ленный ток модуля	ударный	щийся прямой ток модуля _{M)} , А	Температура перехода $T_{VJ}^{*},$	
	неповторяющееся U _{RSM} , В	повторяющееся U_{RRM} , В	Io, A		Tc,	1 V	
	не менее	не менее	не более	не более	°C	не менее	не более
М6Ш-40-1,25			40	300			
М6Ш-80-1,25	150	150	80	600	125	- 40	+125
М6Ш-160-1,25	150	150	160	1200	123	- 40	1123
М6Ш-240-1,25			240	1800			

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль _____ соответствует АЛЕИ.431424.000 ТУ.


Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

МОДУЛЬ ТРЕХФАЗНОГО ДИОДНОГО МОСТА

М6Ш-40-0,6; М6Ш-80-0,6; М6Ш-160-0,6; М6Ш-240-0,6

Модуль трехфазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ОСНОВНЫЕ ПАРАМЕТРЫ

 $T \text{ okp} = 25 \, ^{\circ}\text{C}$

			OCHO	71117112 11/11					1 OKP 23 C
Наименование	Имп	ульсное	Обратный то	ок вентиля,	Электрическая пр	очность	Время обр	атного	Тепловое сопро-
изделия	пр	эмое	I_R	I_R ,		изоляции по постоянному		вления	тивление пере-
	напряже	ение диода,	MA	1		току между радиатором и		trr,	ход-радиатор
	Ţ	U_{FM}				силовыми выводами,			Rth(j-c),
		В							°C/BT
		I _{OUT} ,		U_{RM} ,	В	t,		$I_{F(AV)}$	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М6Ш-40-0,6		126						40	0,80
М6Ш-80-0,6	0,85	251	3,0	60	4000	1	100	80	0,50
М6Ш-160-0,6	0,65	503	3,0	00	4000	1	100	160	0,25
М6Ш-240-0,6		754						240	0,16

ПРЕДЕЛЬНО - ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Наименование изделия	_	е обратное ние диода	Средний выпрям- ленный ток модуля	ударный	щийся прямой ток модуля _{M)} , А	Температура перехода $T_{VJ}^{*},$	
	неповторяющееся U_{RSM} , B	повторяющееся U_{RRM} , В	Io, A		Tc, °C	1 V	
	не менее	не менее	не более	не более	-0	не менее	не более
М6Ш-40-0,6			40	300			
М6Ш-80-0,6	60	60	80	600	125	- 40	+125
М6Ш-160-0,6	00	00	160	1200	123	- 40	+123
М6Ш-240-0,6			240	1800			

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль соответствует АЛЕИ.431424.000 ТУ.

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

МОДУЛЬ ТРЕХФАЗНОГО ДИОДНОГО МОСТА М6Ш-40-2; М6Ш-80-2; М6Ш-120-2; М6Ш-160-2; М6Ш-240-2

Модуль трехфазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ГАБАРИТНЫЕ ЧЕРТЕЖИ И СХЕМА МОДУЛЕЙ 31 104 max 104 max 104 max М6 М 5 Звинта 29**±**0,5 25±0,5 25±0,5 29 1,5 25 10,5 25 10,5 3винта 2,6 2,6 3шт. (26±0,5 26±0,5 5±0,5 47,6 74max 53 ± 1 47,6 Ø5,5 Ø5,5 2 4отв. Ø 5,5 42±0,5 42±0,5 50,5± M 8 92±0,2 2болта 2винта Рисунок 1 Рисунок 2 Рисунок 3 Обозначение Рис. d d_1 М6Ш-40-2 Винт М5 Винт М5 М6Ш-80-2 Винт М5 Винт М5 1 М6Ш-120-2 Винт М6 Винт М5 Ф2 9 М6Ш-160-2 2 М6Ш-200-2 3 М6Ш-240-2 3

ОСНОВНЫЕ ПАРАМЕТРЫ

T окр = 25 °C

			0 011 0 1						1 out 25 C
Наименование	Имп	ульсное	Обратный то	ок вентиля,	Электрическая пр	очность	Время обр	ратного	Тепловое сопро-
изделия	пр	эммое	I_R ,		изоляции по постоянному		восстановления		тивление пере-
	напряже	ение диода,			току между радиа	атором и	диода	trr,	ход-радиатор
	I	$U_{FM,}$			силовыми выводами,		нс		Rth(j-c),
		В			U_{ISOL} ,				⁰С/Вт
		I _{OUT} ,		U_{RM} ,	В	t,		$I_{F(AV)}$	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М6Ш-40-2		126						40	0,80
М6Ш-80-2		251						80	0,45
М6Ш-120-2	0,85	377	3,0	200	4000	1	100	120	0,25
М6Ш-160-2	0,83	503	3,0	200	4000	1	100	160	0,16
М6Ш-200-2		628						200	0,13
М6Ш-240-2		754						240	0,11

ПРЕДЕЛЬНО - ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Наименование изделия	,	е обратное	Средний выпрям-	Неповторяю ударный	щийся прямой ток модуля _{м)} , А	пере	
	неповторяющееся U _{RSM} , В	повторяющееся U _{RRM} , В	Іо, А	*F(S	Tc,	T_{V}	
	не более	не более	не более	не более	C	не менее	не более
М6Ш-40-2			40	300			
М6Ш-80-2			80	600			
М6Ш-120-2	200	200	120	900	125	- 40	+125
М6Ш-160-2	200	200	160	1200	123	- 40	T123
М6Ш-200-2			200	1400			
М6Ш-240-2			240	1800			

* Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль	_соответствует АЛЕИ.431424.000 ТУ.

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

МОДУЛЬ ОДНОФАЗНОГО ДИОДНОГО МОСТА М5Ш-40-1,25; М5Ш-80-1,25; М5Ш-120-1,25; М5Ш-160-1,25; М5Ш-200-1,25; М5Ш-300-1,25

Модуль однофазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ГАБАРИТНЫЕ ЧЕРТЕЖИ И СХЕМА МОДУЛЯ 104 max 104 max Ø 5.5 Ø 5,5 35 ±0,5 Рисунок 1 Рисунок 2 Рисунок 3 Рис. Обозначение d М5Ш-40-1.25 М5Ш-80-1.25 М5Ш-120-1,25 2 Винт М5 2 М5Ш-160-1,25 Винт М6 Болт М8 М5Ш-200-1,25 3 М5Ш-300-1,25 Болт М8

ОСНОВНЫЕ ПАРАМЕТРЫ

Т окр = 25 °C

				O	JIODIIDIE	HALAWIE	I I DI			1 OKP - 25 C
Ī	Наименование	Обратный то	ок вентиля	Импульс	ное прямое	Время об	ратного	Электрическ	ая прочность	Тепловое
	изделия	I_R , M	иΑ	напряжение диода		восстановления		изоляции по постоянному		сопротивление
				U_{FM} ,		диода		току между радиатором и		переход-радиатор
				В		t _{гг} , нс		силовыми выводами,		корпуса на модуль
			U_{RM} ,		Io,		Io,	U _{ISOL} , B	t	Rth(j-c), °C/B _T ,
		не более	В	не более	A	не более	A	не менее	мин	не более
	М5Ш-40-1,25				126		40			0,80
	М5Ш-80-1,25				251		80			0,50
	М5Ш-120-1,25	3,0	125	0.95	377	100	120	4000	1	0,30
	М5Ш-160-1,25		123	0,85	503	100	160	4000	1	0,25
	М5Ш-200-1,25				628		200			0,15
ſ	М5Ш-300-1,25	5,0			950		300			0,1

ПРЕДЕЛЬНО - ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

	111 12/1	цельно - донуст	RIMIDLE I EXKRIMIDI	JKCIIJI J A	тации		
Наименование	-	е обратное	1 ' '	*	щийся прямой	1 71	
изделия	напряжен	ние диода	выпрямленный ток	ударный	ток модуля	перехода	
	неповторяющееся	повторяющееся	модуля	$I_{F(SM)}, A$		\hat{T}_{VJ}^* ,	
	U_{RSM} , B	U_{RRM} , B	Io, A		Tc,	٥(C
	не более	не более	не более	не более	°C	не менее	не более
М5Ш-40-1,25			40	300			
М5Ш-80-1,25			80	600			
М5Ш-120-1,25	125	125	120	900	125	40	+125
М5Ш-160-1,25	123	125	160	1200	125	- 40	+125
М5Ш-200-1,25			200	1400			
М5Ш-300-1,25			300	2100			

* Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится

СВЕДЕНИЯ О ПРИЕМКЕ

г АЛЕИ.431424.000 ТУ.

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

МОДУЛЬ ОДНОФАЗНОГО ДИОДНОГО МОСТА М5Ш-40-2; М5Ш-80-2; М5Ш-120-2; М5Ш-160-2; М5Ш-200-2; М5Ш-300-2

Модуль однофазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ГАБАРИТНЫЕ ЧЕРТЕЖИ И СХЕМА МОДУЛЯ Болт М8 3 29 104 max 104 max Ø 5,5 Ø 5,5 16±0,5 35 ±0,5 4отв. Рисунок 1 Рисунок 2 Рисунок 3 Обозначение Рис D М5Ш-40-2 М5Ш-80-2 М5Ш-120-2 Винт М5 М5Ш-160-2 Винт М6 М5Ш-200-2 М5Ш-300-2

ОСНОВНЫЕ ПАРАМЕТРЫ

T окр = 25 °C

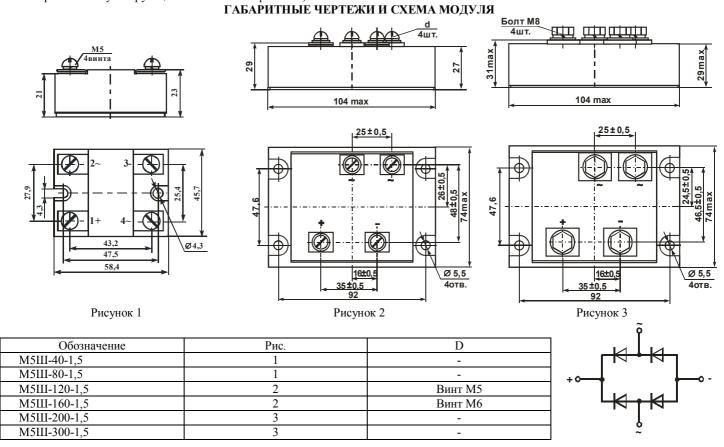
		1 0kp 23 C							
Наименование	Обратный т	ок вентиля	Импульс	ное прямое	Время обратного Электрическая проч			ая прочность	Тепловое
изделия	I_R , N	мΑ	напряже	ние диода	восстано	восстановления		постоянному	сопротивление
			U	FM,	диода		току между радиатором и		переход-радиатор
				В	t _{rr} , нс		силовыми выводами,		корпуса на модуль
		U _{RM} ,		Io,		Io,	U _{ISOL} , B	t	Rth(j-c), °C/B _T ,
	не более	В	не более	A	не более	Α	не менее	мин	не более
М5Ш-40-2				126		40			0,80
М5Ш-80-2				251		80			0,50
М5Ш-120-2	3,0	200	0.95	377	100	120	4000	1	0,30
М5Ш-160-2		200	0,85	503	100	160	4000	1	0,25
М5Ш-200-2				628		200			0,15
М5Ш-300-2	5,0			950		300			0,1

ПРЕДЕЛЬНО – ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

пгедельно – допустимые гежимы эксплуатации									
Наименование	Импульсное обратное		Средний	Неповторяющийся прямой		Температура			
изделия	напряжен	ние диода	выпрямленный ток	ударный -	ток модуля	перехода			
	неповторяющееся	повторяющееся	модуля	$I_{F(S)}$	M), A	T_{V}	" ,		
	U_{RSM} , B	$\hat{\mathrm{U}_{\mathrm{RRM}}}$, B	Io, A	, i	Tc,	0	C		
	не менее	не менее	не более	не более	°C	не менее	не более		
М5Ш-40-2			40	300		- 40			
М5Ш-80-2			80	600					
М5Ш-120-2	200	200	120	900	125		+125		
М5Ш-160-2	200	200	160	1200	125		+125		
М5Ш-200-2			200	1400					
М5Ш-300-2			300	2100					

* Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится


СВЕДЕНИЯ О ПРИЕМКЕ

Модуль	соответствует АЛЕИ.431424.000 ТУ.
Место для штампа ОТК	

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

МОДУЛЬ ОДНОФАЗНОГО ДИОДНОГО МОСТА М5Ш-40-1,5; М5Ш-80-1,5; М5Ш-120-1,5; М5Ш-160-1,5; М5Ш-200-1,5; М5Ш-300-1,5

Модуль однофазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ОСНОВНЫЕ ПАРАМЕТРЫ

T окр = 25 °C

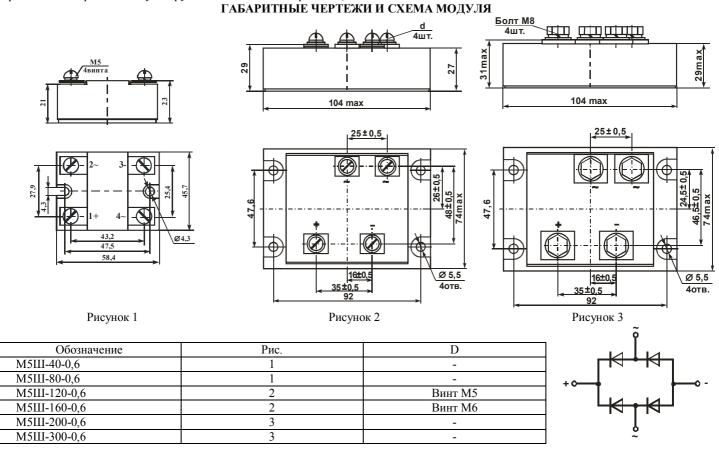
		1 окр = 25 °C							
Наименование	Обратный т	ок вентиля	Импульс	ное прямое	Время об	ратного	Электрическ	ая прочность	Тепловое
изделия	I_R , 1	мА	напряже	ние диода	восстано	вления	изоляции по постоянному		сопротивление
			U	FM,	дио	да	току между ј	радиатором и	переход-радиатор
				В	t _{rr} ,	нс	силовыми	выводами,	корпуса на модуль
		U _{RM} ,		Io,		Io,	U _{ISOL} , B	t	Rth(j-c), °C/B _T ,
	не более	В	не более	A	не более	Α	не менее	МИН	не более
М5Ш-40-1,5				126		40			0,80
М5Ш-80-1,5				251		80			0,50
М5Ш-120-1,5	3,0	150	0,85	377	100	120	4000	1	0,30
М5Ш-160-1,5		130	0,83	503	100	160	4000	1	0,25
М5Ш-200-1,5				628		200			0,15
М5Ш-300-1,5	5,0			950		300			0,1

ПРЕДЕЛЬНО – ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Наименование изделия	1	Импульсное обратное напряжение диода		улапный	щийся прямой гок модуля	Температура перехода		
	неповторяющееся U_{RSM} , B	повторяющееся U_{RRM} , B	ленный ток модуля Іо, А	$I_{F(SM)}, A$ $Tc,$		T _{VJ} *, °C		
	не менее	не менее	не более	не более	°C	не менее	не более	
М5Ш-40-1,5			40	300				
М5Ш-80-1,5			80	600		- 40		
М5Ш-120-1,5	150	150	120	900	125		+125	
М5Ш-160-1,5	130	150	160	1200	125		+125	
М5Ш-200-1,5			200	1400				
М5Ш-300-1,5			300	2100				

* Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится


СВЕДЕНИЯ О ПРИЕМКЕ

Модуль	соответствует АЛЕИ.431424.000 ТУ.
Место для штампа ОТК	

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

МОДУЛЬ ОДНОФАЗНОГО ДИОДНОГО МОСТА М5Ш-40-0,6; М5Ш-80-0,6; М5Ш-120-0,6; М5Ш-160-0,6; М5Ш-200-0,6; М5Ш-300-0,6

Модуль однофазного выпрямительного моста на основе диодов Шоттки предназначен для выпрямления (преобразования переменного напряжения в пульсирующее постоянное напряжение).

ОСНОВНЫЕ ПАРАМЕТРЫ Т окр = 2									
Наименование	Обратный т	ок вентиля	Импульс	ное прямое	Время об	ратного	Электрическ	ая прочность	Тепловое
изделия	I_R , N	мΑ	напряже	ние диода	восстано	вления	изоляции по постоянному		сопротивление
			U	FM,	дио	да	току между радиатором и		переход–радиатор
				В	t _{rr} ,	нс	силовыми	выводами,	корпуса на модуль
		U_{RM} ,		Io,		Io,	U _{ISOL} , B t		Rth(j-c), °C/BT,
	не более	В	не более	A	не более	Α	не менее	МИН	не более
М5Ш-40-0,6				126		40			0,80
М5Ш-80-0,6				251		80			0,50
М5Ш-120-0,6	3,0	60	0,85	377	100	120	4000	1	0,30
М5Ш-160-0,6		00	0,83	503	100	160	4000	1	0,25
М5Ш-200-0,6				628		200			0,15
М5Ш-300-0,6	5,0			950		300			0,1

ПРЕДЕЛЬНО – ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ Наименование Импульсное обратное Неповторяющийся прямой Температура Средний изделия напряжение диода ударный ток модуля перехода выпрямленный ток неповторяющееся T_{VJ}^* , повторяющееся модуля U_{RSM} , B U_{RRM} , B Io, A Tc, °C не менее не более не более не более не менее не менее М5Ш-40-0,6 40 300 М5Ш-80-0,6 80 600 М5Ш-120-0,6 900 120 60 60 125 - 40 +125 М5Ш-160-0,6 1200 160 М5Ш-200-0,6 200 1400 М5Ш-300-0.6 300 2100

* Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах Драгоценных металлов не содержится

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль	соответствует АЛЕИ.431424.000 ТУ.
Место для штампа ОТК	

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4Ш, М4ША

40, 80, 120, 160, 200, 240, 320 А 2 кл.

Диодно-диодный модуль на основе диодов Шоттки предназначен для преобразования переменного тока в пульсирующий постоянный (в составе однофазных и трехфазных диодных мостов).

ГАБАРИТНЫЕ ЧЕРТЕЖИ

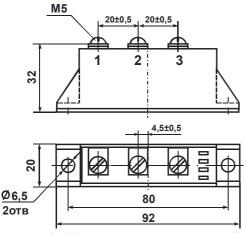
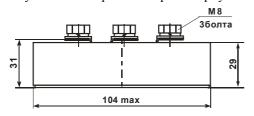



Рисунок 1 – Габаритный чертеж корпуса Е1

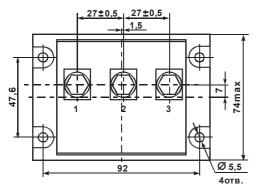
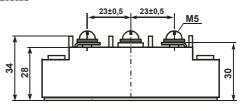



Рисунок 3 – Габаритный чертеж корпуса ДМ

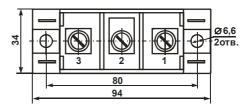



Рисунок 2- Габаритный чертеж корпуса Е2

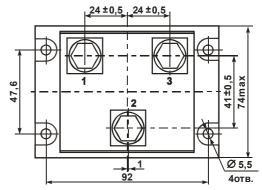
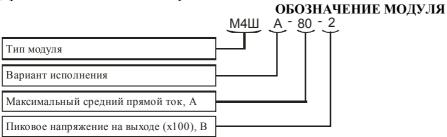


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозначение модуля	Рис.	Обозначение модуля	Рис.
М4Ш-40-2	1 или 2	М4ША-40-2	2
М4Ш-80-2	1 или 2	М4ША-80-2	2
М4Ш-120-2	2	М4ША-120-2	2
М4Ш-160-2	2	М4ША-160-2	2
М4Ш-200-2	3	М4ША-200-2	3
М4Ш-240-2	3	М4ША-240-2	3
М4Ш-320-2	4	М4ША-320-2	4

Рисунок 5 – Схема соединения М4Ш


Рисунок 6 – Схема соединения М4ША

Наименование	Имп	ульсное	Повторян	omniioa	Эпактринас	Время обр	AOTHOEO	Тепловое со-	
	•	•			Электричес	восстано			
изделия	пр	ямое	импульсный	импульсный обратный		прочность изоляции			противление
	напр	яжение,	TOI	ζ,	по постоянн	юму	trr,		переход-
	J	$J_{FM,}$	I_{RR}	м,	току межд	цу	нс		радиатор
		В	M.A	A	радиаторо	ми			Rth(j-c),
					силовым	И			⁰С/Вт
						выводами,			
	_				U_{ISOL} ,				
		I_{OUT} ,	U _{OUT} ,		В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М4Шх-40-2		126						40	0,80
М4Шх-80-2		251						80	0,45
М4Шх-120-2		377						120	0,25
М4Шх-160-2	0.85	503	1,0	200	4000	1	100	160	0,16
М4Шх-200-2		628						200	0,13
М4Шх-240-2		754						240	0,11
М4Шх-320-2		1005						320	0,08

Наименование	Неповто-	Повто-	Средний	Действую-	Импульс	ный	Ударныі	й пря-	Критическая	Темпе	ратура
изделия	ряющееся	ряющееся	прямой ток	щий пря-	прямой	прямой ток		диода	скорость	перехода	
	импульс-	импульс-	диода	мой ток	диода	a	$I_{F(SM)}$),	нарастания	T_{V}	" ,
	ное обрат-	ное обрат-	$I_{F(AV)}$,	диода	I_{FM} ,		A,		тока в от-	٥(C
	ное напря-	ное напря-	Α	I_{FRMS} ,	A				крытом		
	жение	жение дио-		A					состоянии,		
	U_{RSM} ,	да							(di _F / dt) cr,		
	В	U_{RRM} ,							А/мкс		
		В				Q		t,			
	не более	не более	не более	не более	не более		не более	MC	не менее	не	не
										менее	более
М4Шх-40-2			40	63	80		300				
М4Шх-80-2			80	125	160		600				
M4IIIx-120-2			120	188	240		900				
М4Шх-160-2	200	200	160	251	320	2	1200	10	160	-40	+125
M4IIIx-200-2			200	314	400		1500				
М4Шх-240-2			240	377	480		1800				
М4Шх-320-2			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа	соответствует АЛЕИ.435744.000 ТУ
WIOZ VIID I IIIIG	COOTBCTCTB (CT 7 1311211. 133 / 1 1.000 1 3

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4Ш, М4ША

40, 80, 120, 160, 200, 240, 320А 1,25 кл.

Диодно-диодный модуль на основе диодов Шоттки предназначен для преобразования переменного тока в пульсирующий постоянный (в составе однофазных и трехфазных диодных мостов).

ГАБАРИТНЫЕ ЧЕРТЕЖИ

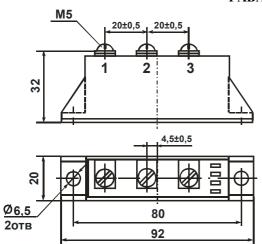
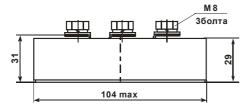



Рисунок 1 – Габаритный чертеж корпуса Е1

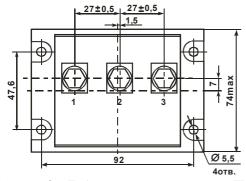
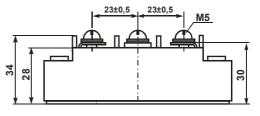



Рисунок 3 – Габаритный чертеж корпуса ДМ

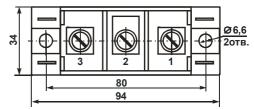
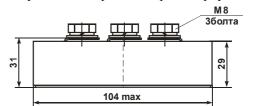



Рисунок 2- Габаритный чертеж корпуса Е2

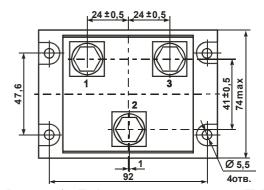


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозначение модуля	Рис.	Обозначение модуля	Рис.
М4Ш-40-1,25	1 или 2	М4ША-40-1,25	2
М4Ш-80-1,25	1 или 2	М4ША-80-1,25	2
М4Ш-120-1,25	2	М4ША-120-1,25	2
М4Ш-160-1,25	2	М4ША-160-1,25	2
М4Ш-200-1,25	3	М4ША-200-1,25	3
М4Ш-240-1,25	3	М4ША-240-1,25	3
M4III-320-1,25	4	М4ША-320-1,25	4

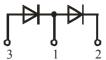
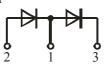
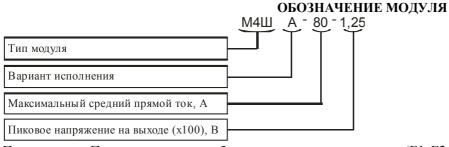


Рисунок 5 – Схема соединения М4Ш




Рисунок 6 – Схема соединения М4ША

			0 01101	TIDIE IIIXI	111112		1 0kp 23 C		
Наименование	Имп	ульсное	Повторяющийся		Электричес	кая	Время обр	атного	Тепловое со-
изделия	пр	ямое	импульсный	і обратный	прочность изо	ляции	восстанов	вления	противление
	напр	яжение,	TOI	ζ,	по постоянному		trr,		переход-
	J	$J_{FM,}$	I_{RR}	м,	току между		нс		радиатор
		В	мА		радиаторо			Rth(j-c),	
					силовым			$^{0}\mathrm{C/Br}$	
					выводами,				
					U _{ISOL} ,				
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	Α	не более
М4Ш(А)-40-1,25		126						40	0,80
М4Ш(А)-80-1,25		251						80	0,50
М4Ш(А)-120-1,25		377						120	0,30
М4Ш(А)-160-1,25	0.85	503	1,0	125	4000	1	100	160	0,25
М4Ш(А)-200-1,25		628						200	0,22
М4Ш(А)-240-1,25		754						240	0,16
М4Ш(А)-320-1,25		1005						320	0,12

Наименование	Неповто-	Повторяю-	Средний	Дейст-	Импульс	ный	Ударныі	й пря-	Критическая	Темпе	ратура	
изделия	ряющееся	щееся им-	прямой	вующий	прямой	ток	мой ток	диода	скорость	пере	перехода	
	импульс-	пульсное	ток диода	прямой	диода		$I_{F(SM)}$,		нарастания	T_{V}	y* ,	
	ное обрат-	обратное	$I_{F(AV)}$,	ток диода	I_{FM} ,		A,		тока в от-	0	C	
	ное напря-	напряжение	A	I_{FRMS} ,	Α				крытом			
	жение	диода		A		Q		t,	состоянии,			
	U_{RSM} ,	U_{RRM} ,						мс	(di _F / dt) cr,			
	В	В							А/мкс			
	не более	не более	не более	не более	не более		не более		не менее	не	не	
										менее	более	
М4Ш(А)-40-1,25			40	63	80		300					
М4Ш(A)-80-1,25			80	125	160		600					
М4Ш(А)-120-1,25	1		120	188	240		900					
М4Ш(А)-160-1,25	125	125	160	251	320	2	1200	10	160	-40	+125	
М4Ш(А)-200-1,25	1		200	314	400		1500					
М4Ш(А)-240-1,25	1		240	377	480		1800					
М4Ш(А)-320-1,25			320	502	640		2100					

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

 Модуль типа

 соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4Ш, М4ША

40, 80, 120, 160, 200, 240, 320А 1,5 кл.

Диодно-диодный модуль на основе диодов Шоттки предназначен для преобразования переменного тока в пульсирующий постоянный (в составе однофазных и трехфазных диодных мостов).

ГАБАРИТНЫЕ ЧЕРТЕЖИ

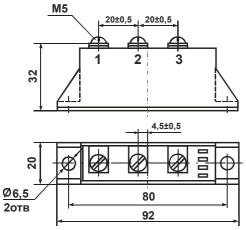
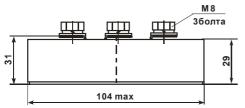



Рисунок 1 – Габаритный чертеж корпуса Е1

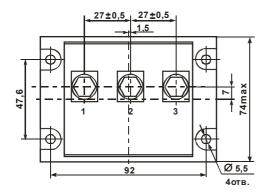
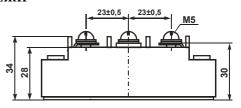



Рисунок 3 – Габаритный чертеж корпуса ДМ

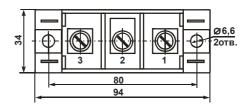


Рисунок 2- Габаритный чертеж корпуса Е2

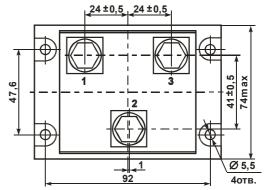
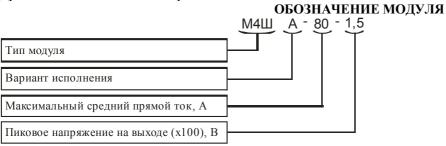


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозначение	1	Обозначение	
	Рис.		Рис.
модуля	_	модуля	_
М4Ш-40-1,5	1 или 2	М4ША-40-1,5	2
М4Ш-80-1,5	1 или 2	М4ША-80-1,5	2
М4Ш-120-1,5	2	М4ША-120-1,5	2
М4Ш-160-1,5	2	М4ША-160-1,5	2
М4Ш-200-1,5	3	М4ША-200-1,5	3
М4Ш-240-1,5	3	М4ША-240-1,5	3
М4Ш-320-1,5	4	М4ША-320-1,5	4

Рисунок 5 – Схема соединения М4Ш


Рисунок 6 – Схема соединения М4ША

			OCHO	HOLE HAL	ANIETIDI				1 0kp - 25 C
Наименование	Имп	ульсное	Повторя	ощийся	Электричес	кая	Время обр	атного	Тепловое со-
изделия	пр	ямое	импульсный	ипульсный обратный		ляции	восстанов	вления	противление
	напра	яжение,	TO	ς,	по постоянному		trr,		переход-
	J	$J_{FM,}$	I_{RRM} ,		току межд	нс		радиатор	
		В	MA	х радиатором		адиатором и			Rth(j-c),
					силовым			⁰С/Вт	
					выводамі				
	_				U _{ISOL} ,				
		I_{OUT} ,		U _{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	Α	не более
М4Шх-40-1,5		126						40	0,80
М4Шх-80-1,5		251						80	0,50
М4Шх-120-1,5		377						120	0,30
М4Шх-160-1,5	0.85	503	1,0	150	4000	1	100	160	0,25
М4Шх-200-1,5		628						200	0,22
М4Шх-240-1,5		754]					240	0,16
М4Шх-320-1,5		1005						320	0,12

Наименование	Неповто-	Повто-	Средний	Действую-	Импульс	ный	Ударныі	й пря-	Критическая	Темпе	ратура
изделия	ряющееся	ряющееся	прямой ток	щий пря-	прямой	ток	мой ток	диода	скорость	перехода	
	импульс-	импульс-	диода	мой ток	диода		$I_{F(SM)}$	$I_{F(SM)}$, нараста		нарастания T_{VJ}^*	
	ное обрат-	ное обрат-	$I_{F(AV)}$,	диода	I _{FM} ,	I_{FM} ,		А, тока в от-		°C	
	ное напря-	ное напря-	A	I_{FRMS} ,	A				крытом		
	жение	жение дио-		Α					состоянии,		
	U_{RSM} ,	да							$(di_F / dt) cr,$		
	В	U_{RRM} ,					<u> </u>		А/мкс		
		В				Q		t,			
	не более	не более	не более	не более	не более		не более	MC	не менее	не	не
										менее	более
М4Шх-40-1,5			40	63	80		300				
М4Шх-80-1,5			80	125	160		600				
М4Шх-120-1,5			120	188	240		900				
М4Шх-160-1,5	150	150	160	251	320	2	1200	10	160	-40	+125
M4IIIx-200-1,5			200	314	400		1500				
М4Шх-240-1,5			240	377	480		1800				
М4Шх-320-1,5			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4Ш, М4ША

40, 80, 120, 160, 200, 240, 320A 0,6 кл.

Диодно-диодный модуль на основе диодов Шоттки предназначен для преобразования переменного тока в пульсирующий постоянный (в составе однофазных и трехфазных диодных мостов).

ГАБАРИТНЫЕ ЧЕРТЕЖИ

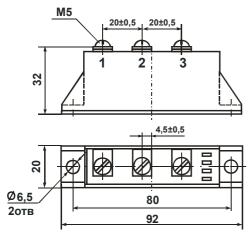


Рисунок 1 – Габаритный чертеж корпуса Е1

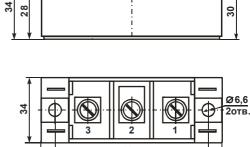
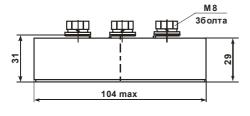



Рисунок 2- Габаритный чертеж корпуса Е2

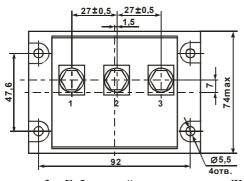


Рисунок 3 – Габаритный чертеж корпуса ДМ

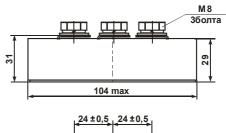


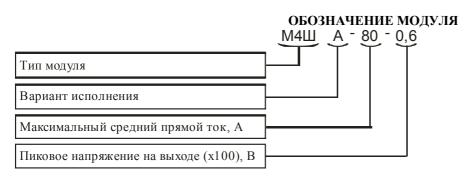
Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозначение модуля	Рис.	Обозначение модуля	Рис.
М4Ш-40-0,6	1 или 2	М4ША-40-0,6	2
М4Ш-80-0,6	1 или 2	М4ША-80-0,6	2
М4Ш-120-0,6	2	М4ША-120-0,6	2
М4Ш-160-0,6	2	М4ША-160-0,6	2
М4Ш-200-0,6	3	М4ША-200-0,6	3
М4Ш-240-0,6	3	М4ША-240-0,6	3
М4Ш-320-0,6	4	М4ША-320-0,6	4



Рисунок 5 – Схема соединения М4Ш


Рисунок 6 – Схема соединения М4ША

	CONODIDE III II III III III								1 OKP 23 C
Наименование	Имп	ульсное	Повторяю	цийся	Электрическа	Я	Время обр	оатного	Тепловое со-
изделия	пр	эммое	импульсный	і обрат-	прочность изоля	яции	восстано	вления	противление
	напр	яжение,	ный то	к,	по постоянному то	trr,	,	переход-	
	J	$J_{FM,}$	I_{RRM} ,		ду радиатором	ии	нс		радиатор
		В	мА		силовыми вывод	цами,			Rth(j-c),
					U_{ISOL} ,				⁰ С/Вт
		I_{OUT} ,		U _{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М4Ш(А)-40-0,6		126						40	0,8
М4Ш(А)-80-0,6		251						80	0,5
М4Ш(А)-120-0,6		377						120	0,3
М4Ш(А)-160-0,6	0,85	503	1,0	60	4000	1	100	160	0,25
М4Ш(А)-200-0,6		628						200	0,22
М4Ш(А)-240-0,6		754	754					240	0,16
М4Ш(А)-320-0,6		1005						320	0,12

Harmanananan	Hamanna	Попто	Carama	Пажат	17	5	17	·	I/	Т.,,,,,	
Наименование	Неповто-	Повто-	Средний	Дейст-	_		-	-	Критическая	темпе	ратура
изделия	ряющееся	ряющееся	прямой	вующий	прямой	ток	мой ток	диода	скорость	перехода	
	импульсное	импульсное	ток диода	прямой	диода		$I_{F(SM)}$,		нарастания	T_{V}	, *,
	обратное	обратное	$I_{F(AV)}$,	ток диода	I_{FM} ,		A,		тока в от-	°(С
	напряже-	напряже-	Α	I_{FRMS} ,	A				крытом		
	ние	ние диода		Α		Q		t,	состоянии,		
	U_{RSM} ,	U_{RRM} ,						мс	$(di_F / dt) cr,$		
	В	В							А/мкс		
	не более	не более	не более	не более	не более		не более		не менее	не ме-	не
										нее	более
М4Ш(А)-40-0,6			40	63	80		300				
М4Ш(А)-80-0,6			80	125	160		600				
М4Ш(А)-120-0,6			120	188	240		900				
М4Ш(А)-160-0,6	60	60	160	251	320	2	1200	10	160	-40	+125
М4Ш(А)-200-0,6			200	314	400		1500				
М4Ш(А)-240-0,6			240	377	480		1800				
М4Ш(А)-320-0,6			320	502	640		2100				

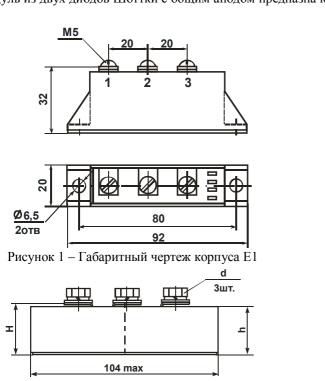
^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа _____ соответствует АЛЕИ.435744.000 ТУ


Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.3Ш, М4.3ША

40, 80, 120, 160, 200, 240 A 2 кл.

Модуль из двух диодов Шоттки с общим анодом предназначен для применения в составе мощных преобразователей.

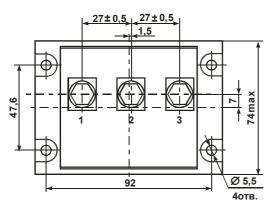
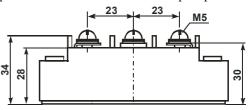



Рисунок 3 – Габаритный чертеж корпуса ДМ

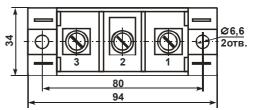



Рисунок 2- Габаритный чертеж корпуса Е2

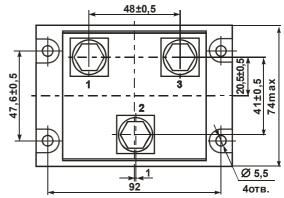


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозна	чение модуля	Рис.	d	h	Н
М4.3Ш-40-2	М4.3ША-40-2	1 или 2	-	-	-
М4.3Ш-80-2	М4.3ША-80-2	1 или 2	-	-	-
М4.3Ш-120-2	М4.3ША-120-2	2	-	-	-
М4.3Ш-160-2	М4.3ША-160-2	2 или 3	Винт М6	27	29
М4.3Ш-200-2	М4.3ША-200-2	3	Болт М8	29	31
М4.3Ш-240-2	M4.3IIIA-240-2	3	Болт м8	29	31
M4.3III-320-2	M4.2IIIA-320-2	4	=	=	-

Рисунок 5 – Схема соединения М4.3Ш

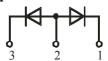


Рисунок 6 – Схема соединения М4.3ША

Наименование	Имп	ульсное	Повторян	оппийся	Электричес	T O O	Время обр	ATHOEO	Тепловое со-
	•	•	-		•				
изделия	пр	ямое	импульсный	и обратный	прочность изо	ляции	восстанов	вления	противление
	напр	яжение,	TOI	ζ,	по постоянн	юму	trr,		переход-
	J	$J_{FM,}$	I_{RR}	м,	току между		нс		радиатор
		В	мА		радиатором и				Rth(j-c),
					силовыми				°С/Вт
					выводамі				
	_				U_{ISOL} ,				
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М4.3Шх-40-2		126						40	0,80
М4.3Шх-80-2		251						80	0,45
М4.3Шх-120-2		377						120	0,25
М4.3Шх-160-2	0,85	503	1,0	200	4000	1	100	160	0,16
М4.3Шх-200-2		628						200	0,13
М4.3Шх-240-2		754						240	0,11
M4.3IIIx-320-2		1005						320	0,08

Наименование	Неповто-	Повто-	Средний	Действую-	Импульс	ный	Ударный	й пря-	Критическая	Темпе	ратура
изделия	ряющееся	ряющееся	прямой ток	щий пря-	прямой	ток	мой ток	диода	скорость	пере	хода
	импульс-	импульс-	диода	мой ток	диода	a	$I_{F(SM)}$	$I_{F(SM)}$, нарастания		T_{VJ}^* ,	
	ное обрат-	ное обрат-	$I_{F(AV)}$,	диода	I_{FM} ,		A,		А, тока в от-		C
	ное напря-	ное напря-	A	I_{FRMS} ,	A				крытом		
	жение	жение дио-		Α					состоянии,		
	U_{RSM} ,	да							$(di_F / dt) cr,$		
	В	U_{RRM} ,							А/мкс		
		В				Q		t,			
	не более	не более	не более	не более	не более		не более	мс	не менее	не	не
										менее	более
М4.3Шх-40-2			40	63	80		300				
М4.3Шх-80-2			80	125	160		600				
М4.3Шх-120-2			120	188	240		900				
М4.3Шх-160-2	200	200	160	251	320	2	1200	10	160	-40	+125
М4.3Шх-200-2			200	314	400		1500				
M4.3Шx-240-2			240	377	480		1800				
M4.3Шx-320-2			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

Модуль типа СВЕДЕНИЯ О ПРИЕМКЕ соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК


РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.3ШA

40, 80, 120, 160, 200, 240, 320А 1,25 кл.

Модуль из двух диодов Шоттки с общим анодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

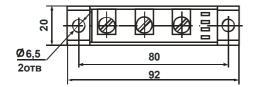
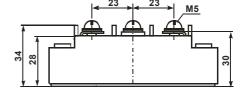



Рисунок 1 – Габаритный чертеж корпуса Е1

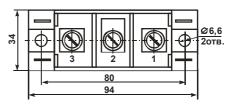
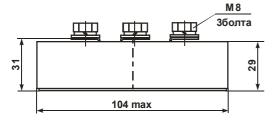



Рисунок 2- Габаритный чертеж корпуса Е2

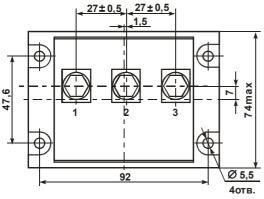
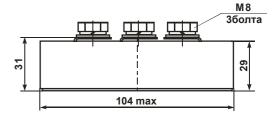



Рисунок 3 – Габаритный чертеж корпуса ДМ

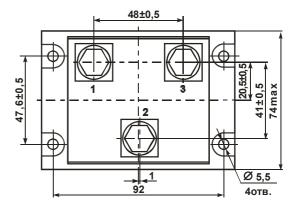


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обознач	ение модуля	Рис.	h	Н
М4.3Ш-40-1,25	М4.3ША-40-1,25	1 или 2	-	-
М4.3Ш-80-1,25	М4.3ША-80-1,25	1 или 2	-	-
М4.3Ш-120-1,25	М4.3ША-120-1,25	2	-	-
М4.3Ш-160-1,25	М4.3ША-160-1,25	2		-
М4.3Ш-200-1,25	М4.3ША-200-1,25	3	27	29
М4.3Ш-240-1,25	М4.3ША-240-1,25	3	29	31
М4.3Ш-320-1,25	М4.3ША-320-1,25	4	-	-



Рисунок 5 – Схема соединения М4.3Ш

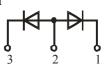


Рисунок 6 – Схема соединения М4.3ША

			1 0kp - 25 C						
Наименование	Имп	ульсное	Повторя	ощийся	Электричес	кая	Время обр	атного	Тепловое со-
изделия	пр	ямое	импульсный	й обратный	прочность изоляции		прочность изоляции восстановления		противление
	напр	яжение,	ток,		по постоянному		trr,		переход-
	J	$J_{FM,}$	I_{RRM} ,		току между		нс		радиатор
	В		мА		радиаторо			Rth(j-c),	
					силовым	И			⁰С/Вт
				выводамі					
					U _{ISOL} ,				
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	Α	не более
М4.3Ш(А)-40-1,25		126						40	0,80
М4.3Ш(А)-80-1,25		251						80	0,50
М4.3Ш(А)-120-1,25		377						120	0,30
М4.3Ш(А)-160-1,25	0,85	503	1,0	125	4000	1	100	160	0,25
М4.3Ш(А)-200-1,25		628						200	0,22
М4.3Ш(А)-240-1,25							240	0,16	
М4.3Ш(А)-320-1,25		1005						320	0,12

in excession with the second straining and the second straining at the second straining and the second straining at the second str											
Наименование	Неповто-	Повторяю-	Средний	Дейст-	Импульс	ный	Ударныі	й пря-	Критическая	Темпе	ратура
изделия	ряющееся	щееся им-	прямой	вующий	прямой	прямой ток		диода	скорость	пере	хода
	импульс-	пульсное	ток диода	прямой	диода	диода		I) ,	нарастания	T_{V}	,*,
	ное обрат-	обратное	$I_{F(AV)}$,	ток диода	I_{FM} ,		A,		тока в от-	в от- °(
	ное напря-	напряжение	Α	I_{FRMS} ,	A				крытом		
	жение	диода		A		Q		t,	состоянии,		
	U_{RSM} ,	U_{RRM} ,				_		мс	$(di_F / dt) cr,$		
	В	В							А/мкс		
	не более	не более	не более	не более	не более		не более		не менее	не	не
										менее	более
М4.3Ш(А)-40-1,25			40	63	80		300				
М4.3Ш(А)-80-1,25			80	125	160		600				
М4.3Ш(А)-120-1,25			120	188	240		900				
М4.3Ш(А)-160-1,25	125	125	160	251	320	2	1200	10	160	-40	+125
М4.3Ш(А)-200-1,25			200	314	400		1500				
М4.3Ш(А)-240-1,25			240	377	480		1800				
M4.3Ш(A)-320-1,25			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа _____ соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.3Ш, М4.3ША

40, 80, 120, 160, 200, 240, 320 А 1,5 кл.

Модуль из двух диодов Шоттки с общим анодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

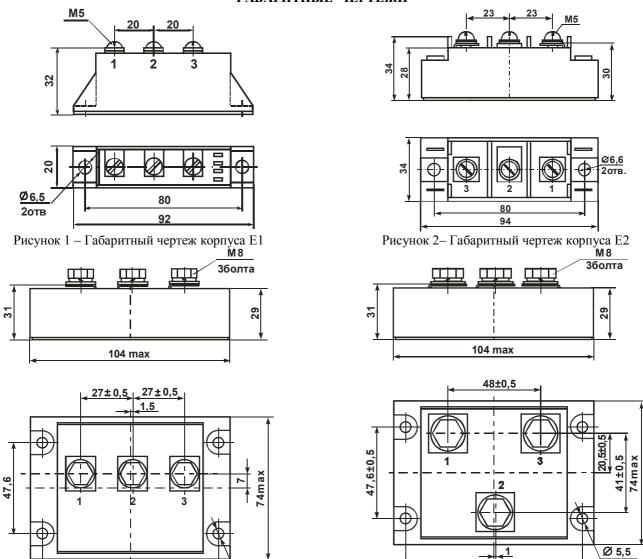


Рисунок 3 – Габаритный чертеж корпуса ДМ Рисунок 4 – Габаритный чертеж корпуса ДМ **ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ**

Ø 5,5

THE TENER											
Обозна	чение модуля	h	Н	Рис.							
М4.3Ш-40-1,5	М4.3ША-40-1,5	-	-	1 или 2							
М4.3Ш-80-1,5	М4.3ША-80-1,5	-	-	1 или 2							
М4.3Ш-120-1,5	М4.3ША-120-1,5	-	-	2							
М4.3Ш-160-1,5	М4.3ША-160-1,5	-	-	2							
М4.3Ш-200-1,5	М4.3ША-200-1,5	27	29	3							
М4.3Ш-240-1,5	М4.3ША-240-1,5	29	31	3							
М4.3Ш-320-1,5	М4.3ША-320-1,5	-	=	4							

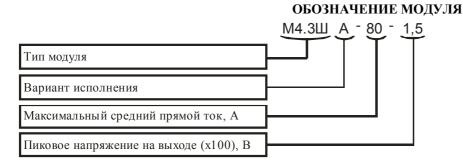
СХЕМЫ ВНУТРЕННЕГО СОЕДИНЕНИЯ

92

Рисунок 5 – Схема соединения М4.3Ш

92

4отв.


Рисунок 6 – Схема соединения М4.3ША

	CONCENTED IN A MATERIAL DI								1 OKP 23 C		
Наименование	Имп	ульсное	Повторян	ощийся	Электричес	кая	Время обр	атного	Тепловое со-		
изделия	пр	ямое	импульсный	й обратный	прочность изо	ляции	восстанов	вления	противление		
	напр	яжение,	ток,		по постоянному		ток, по постоянному trr,		trr,		переход-
	J	$J_{FM,}$	I_{RRM} ,		току между		нс		радиатор		
	В		мА		радиаторо			Rth(j-c),			
					силовым			⁰С/Вт			
					выводамі						
	_				U_{ISOL} ,						
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,			
	не более	Α	не более	В	не менее	МИН	не более	Α	не более		
М4.3Шх-40-1,5		126						40	0,80		
М4.3Шх-80-1,5		251						80	0,50		
М4.3Шх-120-1,5		377						120	0,30		
М4.3Шх-160-1,5	0,85	503	1,0	150	4000	1	100	160	0,25		
М4.3Шх-200-1,5		628						200	0,22		
М4.3Шх-240-1,5	754						240	0,16			
М4.3Шх-320-1,5		1005						320	0,12		

Наименование	Неповто-	Повто-	Средний	Действую-	Импульс	Импульсный		й пря-	Критическая	Темпе	ратура
изделия	ряющееся	ряющееся	прямой ток	щий пря-	прямой	ток	мой ток,	диода	скорость	перехода	
	импульс-	импульс-	диода	мой ток	диода	диода),	нарастания	T_{V}	η * ,
	ное обрат-	ное обрат-	$I_{F(AV)}$,	диода	I_{FM} ,	I_{FM} ,			тока в от-	٥(С
	ное напря-	ное напря-	A	I_{FRMS} ,	A				крытом		
	жение	жение дио-		A					состоянии,	и,	
	U_{RSM} ,	да							(di _F / dt) cr,		
	В	U_{RRM} ,							А/мкс		
		В				Q		t,			
	не более	не более	не более	не более	не более		не более	MC	не менее	не	не
										менее	более
М4.3Шх-40-1,5			40	63	80		300				
М4.3Шх-80-1,5			80	125	160		600				
М4.3Шх-120-1,5	1		120	188	240		900				
М4.3Шх-160-1,5	150	150	160	251	320	2	1200	10	160	-40	+125
М4.3Шх-200-1,5	1		200	314	400		1500				
M4.3IIIx-240-1,5	1		240	377	480		1800				
М4.3Шх-320-1,5			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

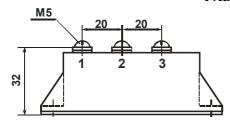
Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ тствует АЛЕИ.435744.000 ТУ

Модуль типа _____ соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК


РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.3ШA

40, 80, 120, 160, 200, 240, 320А 0,6 кл.

Модуль из двух диодов Шоттки с общим анодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

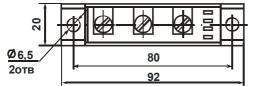
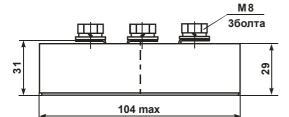



Рисунок 1 – Габаритный чертеж корпуса Е1

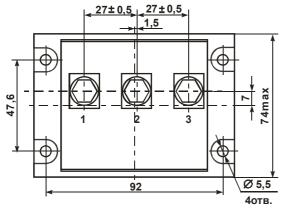
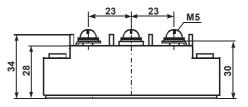



Рисунок 3 – Габаритный чертеж корпуса ДМ

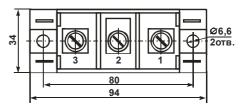
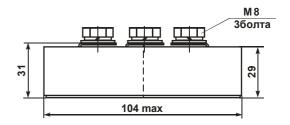



Рисунок 2- Габаритный чертеж корпуса Е2

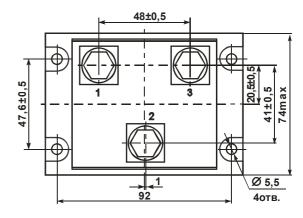


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозна	чение модуля	Рис.								
М4.3Ш-40-0,6	М4.3ША-40-0,6	1 или 2								
М4.3Ш-80-0,6	М4.3ША-80-0,6	1 или 2								
М4.3Ш-120-0,6	М4.3ША-120-0,6	2								
М4.3Ш-160-0,6	М4.3ША-160-0,6	2								
М4.3Ш-200-0,6	М4.3ША-200-0,6	3								
М4.3Ш-240-0,6	М4.3ША-240-0,6	3								
M4.3III-320-0.6	M4.3IIIA-320-0.6	4								

Рисунок 5 – Схема соединения М4.3Ш

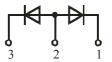


Рисунок 6 – Схема соединения М4.3ША

					1 0kp - 25 C				
Наименование	Имп	ульсное	Повторя	ощийся	Электричес	кая	Время обр	атного	Тепловое со-
изделия	пр	ямое	импульсный	й обратный	прочность изо	ляции	ии восстановления проти		противление
	напр	яжение,	ток,		по постоянному		trr,		переход-
	J	$J_{FM,}$	I_{RRM} ,		току между		нс		радиатор
	В		мА		радиатором и				Rth(j-c),
						И			°C/BT
					выводамі				
					U _{ISOL} ,				
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	A	не более
М4.3Ш(А)-40-0,6		126						40	0,80
М4.3Ш(А)-80-0,6		251						80	0,50
М4.3Ш(А)-120-0,6		377						120	0,30
М4.3Ш(А)-160-0,6	0,85	503	1,0	60	4000	1	100	160	0,25
М4.3Ш(А)-200-0,6		628						200	0,22
М4.3Ш(А)-240-0,6						240	0,16		
М4.3Ш(А)-320-0,6		1005						320	0,12

		F 1 -	F 1					1			
Наименование	Неповто-	Повто-	Средний	Дейст-	Импульс	ный	Ударныі	й пря-	Критическая	Темпе	ратура
изделия	ряющееся	ряющееся	прямой	вующий	прямой	ток	мой ток	диода	скорость	перехода	
	импульсное	импульсное	ток диода	прямой	диода	диода		D) ,	нарастания	T_{VJ}^* ,	
	обратное	обратное	$I_{F(AV)}$,	ток диода	I_{FM} ,	I_{FM} ,			тока в от-	0	С
	напряже-	напряже-	A	I_{FRMS} ,	A				крытом		
	ние	ние диода		A		Q		t,	состоянии,		
	U_{RSM} ,	U_{RRM} ,						мс	(di _F / dt) cr,		
	В	В							А/мкс		
	не более	не более	не более	не более	не более		не более		не менее	не ме-	не
										нее	более
М4.3Ш(А)-40-0,6			40	63	80		300				
М4.3Ш(А)-80-0,6			80	125	160		600				
М4.3Ш(А)-120-0,6	1		120	188	240		900				
М4.3Ш(А)-160-0,6	60	60	160	251	320	2	1200	10	160	-40	+125
М4.3Ш(А)-200-0,6]		200	314	400		1500				
М4.3Ш(А)-240-0,6			240	377	480		1800				
М4.3Ш(А)-320-0,6			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

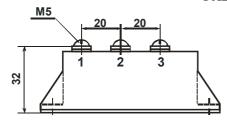
ОБОЗНАЧЕНИЕ МОДУЛЯ М4.3Ш A - 80 - 0,6 Тип модуля Вариант исполнения Максимальный средний прямой ток, А Пиковое напряжение на выходе (х100), В

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК

Модуль типа


РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.2Ш, М4.2ША

40, 80, 120, 160, 200, 240, 320 А 2 кл

Модуль из двух диодов Шоттки с общим катодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

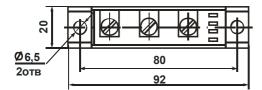
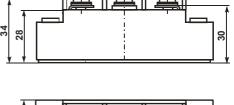



Рисунок 1 – Габаритный чертеж корпуса Е1

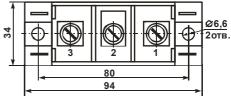
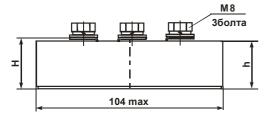



Рисунок 2- Габаритный чертеж корпуса Е2

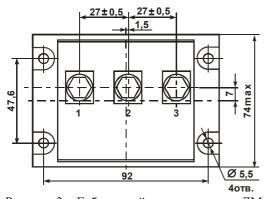


Рисунок 3 – Габаритный чертеж корпуса ДМ

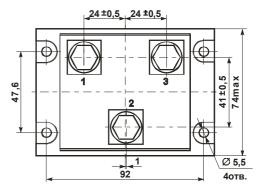


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обозначе	ение модуля	Рис.	d	Н	h
М4.2Ш-40-2	М4.2ША-40-2	1 или 2	-	-	-
М4.2Ш-80-2	М4.2ША-80-2	1 или 2	-	-	-
М4.2Ш-120-2	М4.2ША-120-2	2	-	-	-
М4.2Ш-160-2	М4.2ША-160-2	2 или 3	Винт М6	-	-
М4.2Ш-200-2	М4.2ША-200-2	3	Болт М8	29	27
М4.2Ш-240-2	М4.2ША-240-2	3	Болт М8	31	29
М4.2Ш-320-2	M4.2IIIA-320-2	4	Болт М10	-	-

Рисунок 5 – Схема соединения М4.2Ш

Рисунок 6 – Схема соединения М4.2ША

			001101	71117117 11711			1 OKP 23 C				
Наименование	Имп	ульсное	Повторя	ощийся	Электричес	кая	Время обр	атного	Тепловое со-		
изделия	пр	ямое	импульсный	й обратный	прочность изоляции		восстанов	вления	противление		
	напр	яжение,	ток,		по постоянному		по постоянному t		trr,		переход-
	J	$J_{FM,}$	I_{RR}	I_{RRM} ,		току между			радиатор		
	В мА		мА		радиаторо			Rth(j-c),			
				силовым			$^{0}\mathrm{C/Br}$				
			выводами,								
	_				U _{ISOL} ,						
		I_{OUT} ,		U _{OUT} ,	В	t,		$I_{F(AV)}$,			
	не более	A	не более	В	не менее	МИН	не более	A	не более		
М4.2Шх-40-2		126						40	0,80		
М4.2Шх-80-2		251						80	0,45		
M4.2IIIx-120-2		377	377					120	0,25		
M4.2IIIx-160-2	0,85	503	1,0	200	4000	1	100	160	0,16		
M4.2IIIx-200-2		628					200	0,13			
M4.2IIIx-240-2		754			240	0,11					
M4.2IIIx-320-2	1005							320	0,08		

Наименование	Неповто-	Повто-	Средний	Действую-	Импульс	мпульсный		й пря-	Критическая	кая Темпера		Ī
изделия	ряющееся	ряющееся	прямой ток	щий пря-	прямой	ток	мой ток	диода	скорость	пере	хода	
	импульс-	импульс-	диода	мой ток	диода	диода),	нарастания	T_{VJ}^* ,		
	ное обрат-	ное обрат-	$I_{F(AV)}$,	диода	I_{FM} ,	I _{FM} , A			тока в от-	°C		
	ное напря-	ное напря-	A	I_{FRMS} ,	A				крытом			
	жение	жение дио-		A					состоянии,			
	U_{RSM} ,	да							(di _F / dt) cr,			
	В	U_{RRM} ,				_			А/мкс	l		
		В				Q		t,				
	не более	не более	не более	не более	не более		не более	MC	не менее	не	не	
										менее	более	
М4.2Шх-40-2			40	63	80		300					
М4.2Шх-80-2			80	125	160		600				İ	
М4.2Шх-120-2			120	188	240		900					
М4.2Шх-160-2	200	200	160	251	320	2	1200	10	160	-40	+125	
М4.2Шх-200-2			200	314	400		1500				İ	
M4.2IIIx-240-2			240	377	480		1800				1	
M4.2IIIx-320-2			320	502	640		2100				ĺ	

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

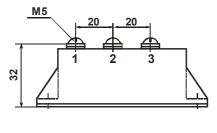
Драгоценных металлов не содержится.

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа _____ соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК


РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.2Ш, М4.2ША

40, 80, 120, 160, 200, 240, 320А 1,25 кл.

Модуль из двух диодов Шоттки с общим катодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

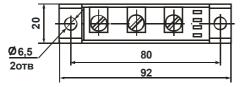
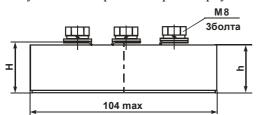



Рисунок 1 – Габаритный чертеж корпуса Е1

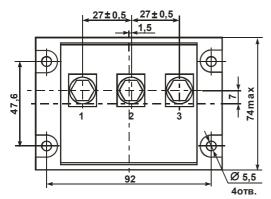
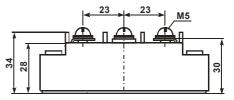



Рисунок 3 – Габаритный чертеж корпуса ДМ

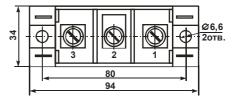
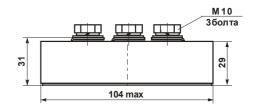



Рисунок 2- Габаритный чертеж корпуса Е2

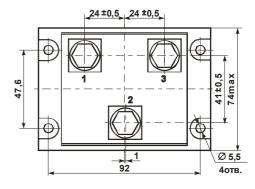
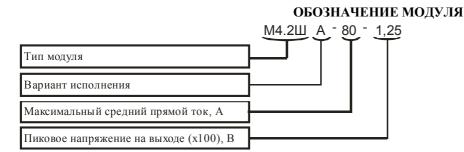


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обознач	ение модуля	Н	h	Рис.
М4.2Ш-40-1,25	М4.2ША-40-1,25	-	-	1 или 2
М4.2Ш-80-1,25	М4.2ША-80-1,25	-	-	1 или 2
М4.2Ш-120-1,25	М4.2ША-120-1,25	-	-	2
М4.2Ш-160-1,25	М4.2ША-160-1,25	-	-	2
М4.2Ш-200-1,25	М4.2ША-200-1,25	29	27	3
М4.2Ш-240-1,25	М4.2ША-240-1,25	31	29	3
М4.2Ш-320-1,25	М4.2ША-320-1,25	-	-	4

Рисунок 5- Схема соединения М4.2Ш


Рисунок 6 – Схема соединения М4.2ША

		OCHODIDIE HAI AMETI DI										
Наименование	Имп	ульсное	Повторя	ощийся	Электричес	кая	Время обр	оатного	Тепловое со-			
изделия	пр	ямое	импульсный обратный		прочность изоляции		восстановления		противление			
	напряжение,		ток,		по постоянному		trr,		переход-			
	$\mathrm{U}_{\mathrm{FM},}$		I_{RR}	M,	току межд	ĮУ	нс		радиатор			
	В		мА		радиаторо	м и			Rth(j-c),			
					силовымі			$^{0}\mathrm{C/Br}$				
					выводами							
	_				U_{ISOL} ,							
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,				
	не более	A	не более	В	не менее	МИН	не более	A	не более			
М4.2Ш(А)-40-1,25		126						40	0,80			
М4.2Ш(А)-80-1,25		251						80	0,50			
М4.2Ш(А)-120-1,25		377						120	0,30			
М4.2Ш(А)-160-1,25	0,85	503	1,0	125	4000	1	100	160	0,25			
М4.2Ш(А)-200-1,25] [628						200	0,22			
М4.2Ш(А)-240-1,25] [754						240	0,16			
М4.2Ш(А)-320-1,25		1005						320	0,12			

Наименование	Неповто-	Повторяю-	Средний	Дейст-	Импульс	ный	Ударныі	й пря-	Критическая	Темпе	ратура
изделия	ряющееся	щееся им-	прямой	вующий	прямой ток		мой ток диода		скорость	перехода	
	импульс-	пульсное	ток диода	прямой	диода	a	$I_{F(SM)}$),	нарастания	T_{VJ}^* ,	
	ное обрат-	обратное	$I_{F(AV)}$,	ток диода	I_{FM} ,		A,		тока в от-	°C	
	ное напря-	напряжение	A	I_{FRMS} ,	A				крытом		
	жение	диода		A		Q		t,	состоянии,		
	U_{RSM} ,	U_{RRM} ,				_		мс	$(di_F / dt) cr,$		
	В	В							А/мкс		
	не более	не более	не более	не более	не более		не более		не менее	не	не
										менее	более
М4.2Ш(А)-40-1,25			40	63	80		300				
M4.2Ш(A)-80-1,25			80	125	160		600				
М4.2Ш(А)-120-1,25]		120	188	240		900				
М4.2Ш(А)-160-1,25	125	125	160	251	320	2	1200	10	160	-40	+125
М4.2Ш(А)-200-1,25			200	314	400		1500				
М4.2Ш(А)-240-1,25			240	377	480		1800				
М4.2Ш(А)-320-1,25			320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

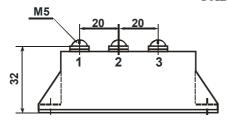
Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

 Модуль типа

 соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК


РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.2Ш, М4.2ША

40, 80, 120, 160, 200, 240, 320А 1,5 кл.

Модуль из двух диодов Шоттки с общим катодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

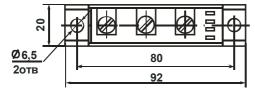
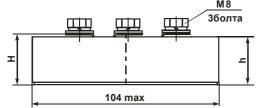



Рисунок 1 – Габаритный чертеж корпуса Е1

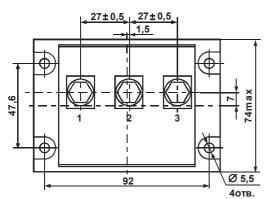


Рисунок 3 – Габаритный чертеж корпуса ДМ

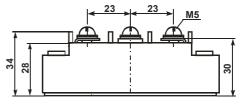


Рисунок 2– Габаритный чертеж корпуса E2 м10

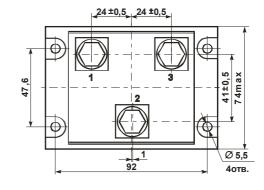


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обознач	h	Н	Рис.	
М4.2Ш-40-1,5	М4.2ША-40-1,5	-	-	1 или 2
М4.2Ш-80-1,5	М4.2ША-80-1,5	-	-	1 или 2
М4.2Ш-120-1,5	М4.2ША-120-1,5	-	-	2
М4.2Ш-160-1,5	М4.2ША-160-1,5	-	-	2
М4.2Ш-200-1,5	М4.2ША-200-1,5	27	29	3
М4.2Ш-240-1,5	М4.2ША-240-1,5	29	31	3
М4.2Ш-320-1,5	М4.2ША-320-1,5	-	-	4

Рисунок 5 – Схема соединения М4.2Ш

Рисунок 6 – Схема соединения М4.2ША

									1 OKP 25 C
Наименование	Имп	ульсное	Повторя	ющийся	Электричес	кая	Время обр	оатного	Тепловое со-
изделия	пр	эммое	импульсный обратный		прочность изоляции		восстановления		противление
	напр	напряжение,		ток,		по постоянному			переход-
	J	$J_{FM,}$	I_{RR}	M,	току межд	току между			радиатор
		В	мА радиатором и силовыми выводами, U _{ISOL} ,		радиаторо	м и			Rth(j-c),
					силовымі			⁰ С/Вт	
					4,				
					U_{ISOL} ,				
		I_{OUT} ,		U _{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	A	не более	В	не менее	МИН	не более	Α	не более
М4.2Шх-40-1,5		126						40	0,80
М4.2Шх-80-1,5		251						80	0,50
M4.2IIIx-120-1,5		377						120	0,30
M4.2Шx-160-1,5	0,85	503	1,0	150	4000	1	100	160	0,25
M4.2IIIx-200-1,5		628						200	0,22
M4.2IIIx-240-1,5		754						240	0,16
M4.2IIIx-320-1,5		1005						320	0,12

Наименование	Неповто-	Повто-	Средний	Действую-	Импульс	ный	Ударный	і пря-	Критическая	Температура	
изделия	ряющееся	ряющееся	прямой ток	щий пря-	прямой	ток	мой ток диода		скорость	перехода	
	импульс-	импульс-	диода	мой ток	диода	a	$I_{F(SM)}$,		нарастания	T_{VJ}^* ,	
	ное обрат-	ное обрат-	$I_{F(AV)}$,	диода	I_{FM} ,		A,		тока в от-	°C	
	ное напря-	ное напря-	A	I_{FRMS} ,	A				крытом		
	жение	жение дио-		A					состоянии,		
	U_{RSM} ,	да							(di _F / dt) cr,		
	В	U_{RRM} ,							А/мкс		
		В				Q		t,			
	не более	не более	не более	не более	не более		не более	MC	не менее	не	не
										менее	более
М4.2Шх-40-1,5			40	63	80		300				
М4.2Шх-80-1,5			80	125	160		600				
М4.2Шх-120-1,5	1		120	188	240		900				
М4.2Шх-160-1,5	150	150	160	251	320	2	1200	10	160	-40	+125
М4.2Шх-200-1,5			200	314	400		1500				
М4.2Шх-240-1,5			240	377	480		1800				
М4.2Шх-320-1.5	1		320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

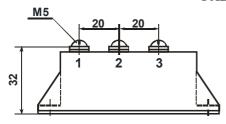
ОБОЗНАЧЕНИЕ МОДУЛЯ

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа	соответствует АЛЕИ.435744.000 Т
тодуль тіпа	COOLDCICIB JOL 1 BIELL 1997 1 1:000 1

Место для штампа ОТК


РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

ДИОДНО-ДИОДНЫЕ МОДУЛИ М4.2Ш, М4.2ША

40, 80, 120, 160, 200, 240, 320А 0,6 кл.

Модуль из двух диодов Шоттки с общим катодом предназначен для применения в составе мощных преобразователей.

ГАБАРИТНЫЕ ЧЕРТЕЖИ

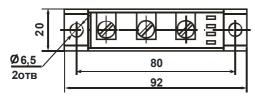
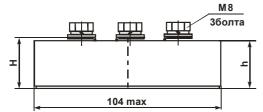



Рисунок 1 – Габаритный чертеж корпуса Е1

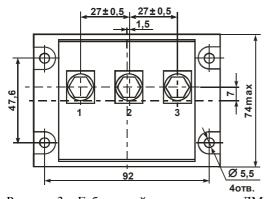
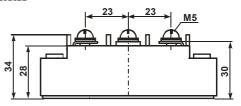



Рисунок 3 – Габаритный чертеж корпуса ДМ

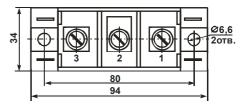
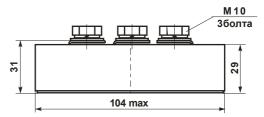



Рисунок 2- Габаритный чертеж корпуса Е2

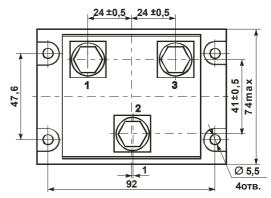


Рисунок 4 – Габаритный чертеж корпуса ДМ

ТАБЛИЦА ГАБАРИТНЫХ ЧЕРТЕЖЕЙ

Обознач	ение модуля	Рис.	h	Н
М4.2Ш-40-0,6	М4.2ША-40-0,6	1 или 2	-	-
М4.2Ш-80-0,6	М4.2ША-80-0,6	1 или 2	-	-
М4.2Ш-120-0,6	М4.2ША-120-0,6	2	-	-
М4.2Ш-160-0,6	М4.2ША-160-0,6	2	-	-
М4.2Ш-200-0,6	М4.2ША-200-0,6	3	27	29
М4.2Ш-240-0,6	М4.2ША-240-0,6	3	29	31
М4.2Ш-320-0,6	М4.2ША-320-0,6	4	-	-

Рисунок 5 – Схема соединения М4.2Ш

Рисунок 6 – Схема соединения М4.2ША

ОСНОВНЫЕ ПАРАМЕТРЫ

T окр = 25 °C

			0 0 0 -						1 OKP 23 C
Наименование	Имп	ульсное	Повторян	ощийся	Электричес	кая	Время обр	оатного	Тепловое со-
изделия	пр	эммое	импульсный	й обратный	прочность изоляции		восстанов	вления	противление
	напр	яжение,	ток,		по постоянн	trr,		переход-	
	Ţ	J_{FM}	I_{RR1}	M,	току межд	току между			радиатор
		В	M.A	4	радиаторо	ми			Rth(j-c),
					силовым			°С/Вт	
					выводамі				
					U_{ISOL} ,				
		I_{OUT} ,		U_{OUT} ,	В	t,		$I_{F(AV)}$,	
	не более	Α	не более	В	не менее	МИН	не более	Α	не более
М4.2Ш(А)-40-0,6		126						40	0,8
М4.2Ш(А)-80-0,6		251						80	0,5
М4.2Ш(А)-120-0,6		377						120	0,3
М4.2Ш(А)-160-0,6	0,85	503	1,0	60	4000	1	100	160	0,25
М4.2Ш(А)-200-0,6		628						200	0,22
М4.2Ш(А)-240-0,6		754						240	0,16
М4.2Ш(А)-320-0,6		1005						320	0,12

ПРЕДЕЛЬНО-ДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Наименование	Неповто-	Повто-	Средний	Дейст-	Импульс	ный	Ударныі	й пря-	Критическая	Температура	
изделия	ряющееся	ряющееся	прямой	вующий	прямой	ток	мой ток	диода	скорость	перехода	
	импульсное	импульсное	ток диода	прямой	диода	a	$I_{F(SM)}$	D) ,	нарастания	T_{VJ}^* ,	
	обратное	обратное	$I_{F(AV)}$,	ток диода	I_{FM} ,		A,		тока в от-	°C	
	напряже-	напряже-	Α	I_{FRMS} ,	A				крытом		
	ние	ние диода		A		Q		t,	состоянии,		
	U_{RSM} ,	U_{RRM} ,						мс	(di _F / dt) cr,		
	В	В							А/мкс		
	не более	не более	не более	не более	не более		не более		не менее	не ме-	не
										нее	более
М4.2Ш(А)-40-0,6			40	63	80		300				
М4.2Ш(А)-80-0,6			80	125	160		600				
М4.2Ш(А)-120-0,6			120	188	240		900				
М4.2Ш(А)-160-0,6	60	60	160	251	320	2	1200	10	160	-40	+125
М4.2Ш(А)-200-0,6			200	314	400		1500				
М4.2Ш(А)-240-0,6	1		240	377	480		1800				
М4.2Ш(А)-320-0,6	1		320	502	640		2100				

^{*} Модули рассчитаны на работу в аппаратуре с применением охладителей, поддерживающих температуру перехода в заданных пределах

Драгоценных металлов не содержится.

ОБОЗНАЧЕНИЕ МОДУЛЯ

Примечание – При заказе модуля необходимо указывать тип корпуса (Е1, Е2, ДМ)

СВЕДЕНИЯ О ПРИЕМКЕ

Модуль типа _____ соответствует АЛЕИ.435744.000 ТУ

Место для штампа ОТК

РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93